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ABSTRACT 

When a truss structure is to be designed two important questions should be 

answered. First, how should the truss that requires the minimum amount of materials look 

like? Second, what are the possible members’ cross sectional areas that support the 

applied load safely?  In this work these two questions are answered using a two stage 

optimization process. In stage one, starting with hyper-connected truss ground structures 

that fully encompass the design region together with specified support conditions and 

load cases, the discrete combinations and arrangement of truss members that will yield 

the lightest and stiffest structure are sought. In the second stage the minimum cross 

sectional areas of the members that satisfy the imposed constraints are sought. In both 

stages harmony search algorithms are employed. These represent one of the most recent 

heuristic, stochastic search optimization methods that, while relatively simple and robust, 

overcome some of the drawbacks of preceding search techniques such as: the ability to 

converge to a global optimum, and the ability to optimize non-differentiable and non-

continuous functions. The viability of the proposed framework is documented on 

numerous benchmark problems from the literature. 
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CHAPTER 1                                                                                                                                     

INTRODUCTION 

Civil engineering structures such as bridges, and buildings are of significant 

importance in facilitating our life and everyday activities. Traditional approaches to 

designing these structures that depend on the designer’s prior experience and some 

common rules of thumb can be helpful, although they may not necessarily result in 

efficient and economical designs. Although both the traditional and the optimum design 

processes are iterative in nature they differ in the way in the way the iterative process is 

terminated. In traditional design a preliminary design is first introduced followed by 

analyses to determine if the structure’s performance satisfies the necessary strength, 

stiffness, and stability specifications. If it does the design process is terminated, otherwise 

the design is refined and tested again. On the other hand, the iterative process in the case 

of the optimum design approach is not terminated after finding an adequate (or feasible) 

design, but only when a different termination or convergence criteria related to optimality 

is achieved [1]. 

Optimal structural designs are not limited to those that are most economical, but 

could also include those with optimized performance characteristics. The bottom line is 

that the criteria to be minimized or maximized (objective function) depends on the 

designer’s needs. Nevertheless, in this thesis the goal or objective is always to obtain a 

structure that requires the least amount of material to satisfy specified constraints.  

This first chapter contains three sections. In the first, a brief introduction to 

structural optimization is given. The second section presents a brief background on 

optimization methods, and finally the third section presents an overview of this thesis and 

its goals. 

 

 



www.manaraa.com

2 
 

 

  

1.1 Structural Optimization 

The general form of an optimization problem can be given as follows:  

 

    (1.1) 

 

 

Above, ℎ𝑖(𝒙) = 0 is the ith equality constraint out of 𝑝 equality constraints, and            

𝑔𝑗(𝒙) ≤ 0  is the jth inequality constraint out of m inequality constraints.  In structural 

optimization inequality constraints are frequently imposed to control the behavior of the 

structure such as by limiting the allowable displacements and the allowable stresses while 

avoiding instabilities such as those associated with buckling.  It is required that calculated 

structural performance measures should not exceed maximum permissible values which 

are denoted in this text as  𝑢𝑚𝑎𝑥 ,  𝜎𝑚𝑎𝑥, and  𝜎𝑏𝑚𝑎𝑥 (maximum buckling stress) .  

Inequality constraints can also be imposed to limit the structural members’ cross sectional 

areas such that they fall between upper and lower limits , ( 𝐴𝑚𝑖𝑛,  𝐴𝑚𝑎𝑥). On the other 

hand, equality constraints are generally imposed only to ensure that for design vector x, a 

bounded equilibrium solution u of the static load-deflection problem that follows exists:     

                                                                                          (1.2) K(x) u f  

Here 𝐾(𝒙) is the stiffness matrix of the structure, 𝒖 is a vector of nodal displacements,   

𝒇 is a vector of applied forces, and x denotes the vector of design variable values. 

 

Structural optimization problems are generally divided into three classes [2]: 

1. Size optimization problems: In this class of problems the goal is to find the 

optimum cross sectional areas or thicknesses for the structural members. 

2. Shape optimization problems: In this class of problems the location of finite 

elements nodes are set as design variables and the goal is to find the optimum 
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location of the nodes. In other forms shape optimization is interpreted as 

finding the best function that describes the bounding shape of the 

structure [2]. 

3. Topology optimization: in this class of problems the goal is to find the optimal 

connectivity between the structural members that comprise the structure. 

Ideally shape optimization is a subclass of topology optimization, and large number of 

nodes in the discretized structure could eliminate the need of shape optimization. Figures 

1.1 shows an initial design, topology optimized design, and size optimized design for a 

cantilever truss.  

 

a) 
b) 

c) 

Figure 1.1: Different classes of structural optimization problems.  a) Initial truss 

design; b) topology optimized truss;   c) a design where the cross sectional areas 

of the members have been optimized and line weight are proportional to cross-

sectional areas.                                                                                                             
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1.2 Optimization Methods and Techniques 

Optimization techniques can, for the sake of simplicity, be divided into two basic 

groups: (1) gradient-based or classical methods; and (2) heuristic methods. Gradient-

based techniques such as linear programing (LP) and nonlinear programing (NLP) 

employ calculus to find the local optimum solution(s) for continuous and differentiable 

functions. On the other hand, heuristic search methods attempt to find a global optimum 

solution using nature-inspired algorithms that consist mainly of two main features: 

intensification and diversification. 

Both classical and heuristic methods have particular classes of problems to which 

they are best applied.  Classical mathematical programming methods apply best to 

problems where the objective and constraint functions are continuous in the design space 

of x.  Classical methods can also be applied equally well to both small problems 

involving only a few design variables, and to large problems involving hundreds of 

thousands of design variables.  Heuristic methods, on the other hand, apply equally well 

to problems where the objective and constraint functions are continuously differentiable 

in the design space of x, or not.  They rely on searching the design space of x with many, 

many function evaluations to find globally optimal solutions.  While their ability to find 

the global optimum is a virtue, they tend to work best with relatively small numbers of 

design variables (say, less than 100 or so).  [See Swan (2013), chapter 5 of Structural 

Topology Optimization for Engineering Applications].   For the discrete structural 

topology optimization problems to be addressed in this thesis, heuristic search methods 

are a natural choice. 

Heuristic search methods involve a combination of rules and randomness, and 

most of them are inspired by naturally-occurring phenomenon. For example, simulated 

annealing [3] is a heuristic method inspired by the metallic annealing process in which a 

metal is cooled slowly from a high energy (temperature) state, and the structure of the 
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metal slowly changes until it eventually reaches the configuration of lowest energy, at 

which point no more changes happen.  Dowsland (1995) noted that the relationship 

between the physical annealing process and the simulated algorithm can be represented as 

follows: the iterative process resembles the slow cooling process, and the values of cost 

function at different points simulates the energy at different temperatures, and finally the 

optimum solution resembles the minimum energy frozen state or the configuration [4]. 

The genetic algorithm is another heuristic method example that mimics the 

process of natural selection and evolution and is part of a bigger group of heuristic 

methods called evolutionary algorithms (EA) [3]. The relationship between genetic 

algorithm and the process of natural selection can be explained as follows: In nature, 

individuals compete for food and mates, with only the most fit individuals surviving to 

and spread their genes to later generations. Mixing many different good genes may 

produce a generation with high fitness. Similarly, in genetic algorithm, an entire group of 

individuals (or candidate solution) is called a “generation”. The fitness of each individual 

in the generation is evaluated with only individuals of a high fitness surviving and are 

used to produce subsequent generations.  The reproduction process continues until a 

termination criteria is satisfied, which is a usually a maximum number of generation 

production [6].  

 In 2001 Geem developed another heuristic technique known as the harmony 

search method [7] that mimics the improvisation of musical harmony by combining 

different musical notes. In this work harmony search and some of its variants are used to 

obtain optimum discrete truss topology solutions. 

1.3 Thesis Overview: Two Stage Truss Optimization 

As mentioned in the previous section, structures such as trusses can be optimized 

by varying the structure’s size, shape, and topology. Although combining these three 

classes of optimization simultaneously can ultimately yield better results, the underlying 
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mathematical model becomes very complicated [8].  Therefore, in this work trusses are 

optimized using a two stage process. In the first stage the optimum truss topology for a 

given applied load is found. Starting with a hyper-connected ground structures, 

optimization process is performed to eliminate the unnecessary or least efficient 

structural members by minimizing the compliance of the structure subject to structural 

volume constraints. 

After the optimum topology of the structure is found, the second stage is started 

wherein the goal is to find the optimum cross-sections of the members that compose the 

structure. This is achieved by minimizing the weight of the structure under stress, 

displacement, and buckling constraints. 
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CHAPTER 2                                                                                                                                     

HARMONY SEARCH METHOD FOR UNCONSTRAINED 

OPTIMIZATION  

2.1 Overview of Harmony Search 

Harmony search by Geem [7] mimics the improvisation of a musical harmony and 

it is one of the most recent heuristic methods. Since it was introduced in 2001 and due to 

its simplicity, harmony search has been implemented to solve different optimization 

problems. In this text the focus is on the application of harmony search in structural 

optimization. In 2001 Geem [7] implemented the harmony search method to the design of 

a pipeline network and it was shown that the results obtained using the harmony search 

outperformed many other existed mathematical and heuristic methods. In 2004 Lee and 

Geem [9] applied the harmony search to size optimize various truss examples with 

continuous design variables and they concluded that the harmony search is a powerful 

search method compared to both mathematical methods and genetic algorithm. Discrete 

size optimization problems for trusses have been solved using harmony search by Lee et 

al [10]. In 2008 Degertekin [11] applied the harmony search to optimize steel frames and 

lighter structures were obtained than those optimized using genetic algorithm and (Ant 

Colony Optimization) ACO algorithm. Harmony search [12] is not limited to structural 

application it has also been extended to solve optimization problems in different 

engineering fields such as mechanical, industrial, geological and aerospace engineering. 

The reminder of this chapter contains five sections devoted to explaining the 

harmony search: In the first and second sections the basic idea, steps, and parameters of 

the harmony search are introduced. The third presents both discrete and continuous 

unconstrained numerical examples while the fourth section presents an overview of some 

variants of the harmony search that have been presented in the literature. Finally, the 
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Explorative Harmony search method (EHS) is presented and discussed in the fifth 

section.  

2.2 Harmony Search: basic ideas, parameters and steps  

The harmony search method derives from an analogy with making music, or more 

specifically combining notes played by different instruments to create harmonious 

sounds.  To begin the analogy, consider a musical group consisting of a fiddle, a 

saxophone, and a piano that wants to play and hold a three-note chord.  For simplicity 

assume that each instrument can instrument can play only three possible notes: (C, A, or 

B) for the fiddle, (E, F, or D) for the saxophone, and (C, A, or, G) for the keyboard.  The 

operative question is, what note should each instrument play to strike a chord of optimal 

harmony?  In this example, there are only 3 x 3 x 3 = 27 possibilities for the chord, so 

each possibility could be tried out by enumeration and the optimum chord found in that 

manner.  Alternatively, if one wants to use a method that will use fewer than 27 trials to 

find the optimum harmony, the harmony search algorithm can be employed.   

Assume that three random trial harmonies have been generated and are stored in the 

so-called harmony memory (HM) of Figure 2.1. Each row in the HM represents a 

candidate harmony to be played: Harmony 1: C, E, C; Harmony 2: A, F, A; and Harmony 

3: B, D, G. Each column represents the notes played by each instrument in the three trial 

harmonies under consideration. The fourth column in the HM of Fig. 2.1 is the evaluation 

column where the quality of each harmony is quantified based on its aesthetic value. In 

this illustration, let us assume that Harmony 1 is the best (has the best aesthetic 

evaluation), Harmony 3 is the worst, and Harmony 2 is intermediate. When a new 

harmony is to be improvised for consideration, each instrument can pick from any of its 

possible values. Let us say that for a new improvised harmony [C,F,G], C for the fiddle, 

F for the saxophone, and G for the keyboard. After the improvisation process the 

aesthetic value of this new improvised harmony is compared with that of the worst 
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harmony in the memory.  If the new improvised harmony is superior to the worst 

harmony in the memory (Harmony 3), then it replaces the worst harmony in the harmony 

memory, otherwise the new harmony is ignored or forgotten and the improvisation and 

analysis process is repeated. 

From this example it is clear that the search for aesthetically pleasing harmonies is 

analogous to the search for unconstrained optimal design solutions.  The particulars of 

this analogy are highlighted in Table 2.1 below.  The specific details of how new 

harmonies (designs) are generated from the harmony (design) memory is crucial since it 

determines how many iterations will be required to converge to an optimum solution, and 

the quality of that optimum solution. 

 

 

 

Figure. 2.1.  Example harmony memory containing three harmonies (designs) each 

containing three notes. 
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In real mathematical optimization problems, harmony search utilizes the so-called 

harmony memory (HM) to store the candidate solutions, and the harmony memory size 

(HMS) represents the number of candidate solutions stored in the harmony memory. The 

harmony memory is initialized by assigning random values to each design variable from 

its own set of possible values  𝑿𝒊 . With the initial HM established, the value of the 

objective function for each harmony is evaluated and the harmony with the worst 

(highest) objective function value is determined. Figure 2.1 shows a general format of the 

HM. 

In each iteration a new harmony is improvised and its objective function is 

evaluated, if it has a better objective function value, it replaces the worst harmony in the 

harmony memory and the harmony memory is updated.  The previous procedure is 

repeated until a termination criteria is met which is usually a predefined maximum 

Harmony search  Unconstrained Design Optimization  

instruments components of system being designed 

notes:  set of possible tones to be played 

by instruments 

design variables:  set of possible design 

values for system components 

chord: specific collection of notes design:  specific collection of design 

variables 

harmony: synthesis of all notes objective function:  synthesis of all design 

variables 

goal:  maximize harmony goal:   extremize objective function 

process:  trial and error, improvise new 

harmonies and try them out 

process:  improvise on designs by trial and 

error  

Table 2.1 Analogy between harmony search and unconstrained design 

optimization. 
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number of iterations or until no further improvement of harmony or design performance 

can be achieved.  

2.2.1 The Classical Harmony Search Method 

One of the key issues that governs the performance of the harmony search 

algorithm is how new designs are improvised in order to improve the overall harmony of 

the system.  In the classical harmony search, this is achieved using the following 

constructs and algorithmic parameters:   

 

 Harmony memory (hm).  This is the working set of chords (designs) that are 

held in memory and that will be used to generate or improvise new chords 

(designs) for consideration. 

 Harmony memory size (hms) is a parameter that specifies how many chords 

(designs) are actually held in memory. 

 harmony memory considering ratio (hmcr) is a parameter on the interval 

[0,1] that specifies the weight that existing chords (designs) are given when 

improvising new ones. 

 pitch adjustment ratio (par) is another parameter on the interval [0,1] that 

weights the extent to which chords (designs) taken from memory are adjusted 

or not in the improvisation process. 

 bandwidth parameter (bw) is an additional parameter that dictates them 

extent to which design variables or notes can vary when their pitch is adjusted. 

In mathematical optimization problems, harmony search utilizes the so-called 

harmony memory (HM) to store the candidate solutions, the number of candidate 
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solutions stored in the harmony memory equals the harmony memory size (HMS). The 

harmony memory is initialized by assigning random values to each design variable from 

the set of possible range  𝑿𝒊 . Let’s consider the following initial harmony memory , the 

value of the objective function for each harmony is evaluated and the harmony with the 

worst (highest) objective function value  is determined. Figure 2.1 shows a general 

format of the HM. 

In each iteration a new harmony is improvised and its objective function is 

evaluated.  If better than the worst design in the harmony memory, the new harmony 

(design) replaces the worst harmony in the harmony memory and the ordering of the 

harmony memory is updated.  The process is repeated until a termination criteria, usually 

associated with a predefined maximum number of allowable iterations, or changes in the 

harmony memory composition, is satisfied.  

 

2.2.2 Harmony Search Parameters 

The harmony search depends on a number of parameters that affect its 

performance such as: Harmony Memory Consideration Ratio (HMCR), Harmony 

Memory Size (HMS), Pitch Adjusting Ratio (PAR), and a band width parameter (bw). 

The HMCR indicates the probability of choosing a value from the HM for the design 

variable and it falls in the range between 0 and 1. For example a value of 0.75 means that 

the probability of picking a design variable value from the harmony memory is equal to 

0.75 and the probability to pick a random value for the possible range is 0.25. 

Once a decision is made to pick a value (pitch) for a design variable from the 

harmony memory (memory consideration), then another test is performed to see whether 

this picked value should be adjusted or perturbed to another value within the admissible 

range. The process of adjusting the chosen value called pitch-adjustment and has a 
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probability equal to    (𝐻𝑀𝐶𝑅 × 𝑃𝐴𝑅)  , and the probability of keeping the chosen value 

as it is without pitch adjustment is    (𝐻𝑀𝐶𝑅 × (1 − 𝑃𝐴𝑅)). 

If the pitch adjustment is to happen then the chosen value (pitch) is adjusted either 

to a larger or smaller value. This decision is made by comparing a randomly generated 

number  𝑟  with a value of 0.5, where  𝑟 ∈ [0,1] .  

The harmony memory size (HMS) is the number of harmonies (candidate 

solutions) that can be stored in the HM. In most examples presented in the literature HMS 

varies between 10 and 50, depending on the type of the problem to be optimized. 

 

2.2.3 Harmony Search Steps 

Harmony search consists of the following five steps: 

1. Formulate the optimization problem and specify the harmony search parameter 

values 

 (HMCR, PAR, HMS, bw). 

2. Initialize the HM. 

3. Improvise a new harmony and evaluate its performance. 

4. Update the HM as necessary (ie, if the improvised harmony is superior to one or 

more harmonies in memory). 

5. Check for the termination criteria. If satisfied stop. Otherwise return to step 3. 

 

Each step is defined further and explained as follows: 

 

Step 1: Formulate Optimization Problem/ Specify HS Parameters  

The first step is basically expressing the objective function and the constraints 

mathematically. For the present we assume that the only constraints imposed are on 



www.manaraa.com

14 
 

 

  

design variables’ ranges (upper and lower limits), or they come from the set of admissible 

values. 

 

min  ( ) 

where:   = ,   1,2,3,...,            

      

 

                   

            

     

 

 

x

i i

f

x i N 

x

x X
 (2.1) 

where:  

𝑥𝑖 : 𝑖
𝑡ℎ design variable value 

𝑿𝑖 : set of possible values of the design variable 𝑥𝑖 . 

𝑁: Number of design variables. 

 

Harmony search parameters should be specified with care, a relatively high 

HMCR value very close to unity reduce the probability of introducing new values to HM. 

Conversely picking a small HMCR close to zero value reduces the exploitation of the 

members stored in HM. With these considerations in mind HMCR values within the 

range 0.5 to 0.9 are usually used and typically PARs are selected from the range [0.3, 

0.8]. Finally HMS values ranging from 10 to 50 have been used in this study. 

Step 2: Initialize the HM 

 

a. Case of continuous variables 

In this step each component of each candidate solution vector is initialized by 

assigning a value from the uniform distribution of admissible values. For example the 

𝑖𝑡ℎ variable is continuous with ,i i iL U
x x x 

 
  then 

    

                        

[0,

      

1]

 

j

i L i U i L ix x x x ran   
  (2.2a) 

where = 1,2, … ,𝑁 ; 𝑁 = number of design variables ; 𝑗 = 1,2,3… . , 𝐻𝑀𝑆.  

b. Case of discrete variables 
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If  𝑥𝑖 ∈ {𝑉1𝑖 , 𝑉2𝑖, 𝑉3𝑖, … , 𝑉𝐾𝑖  } are the K candidate values for 𝑥𝑖 then 𝑥𝑖
𝑗
= 𝑉𝑙𝑖  

where 

 

     

             

1 int 0

             

,1

     

Kl Vran            (2.2b) 

The harmony memory (HM) can be represented in a matrix form as follows: 

11 1

1

1

 

                           

( ). . .

. ..

         . ..

. ..

( ).

  

. .

  

HMSHMS

N

HMS

N

xx f x

HM

xx f x

 
 
 
 
 
 
 
 

  (2.3) 

Step 3: New Harmony Improvisation 

As mentioned above each improvised harmony    1 2, ,..., Nx x x   x  is obtained 

either from the harmony memory or generated randomly from the set of admissible 

values. If the component’s value comes from the harmony memory it is further tested to 

see if it should be pitch adjusted. The pitch adjustment process is different for continuous 

design variables and discrete design variables. Each component in the improvised 

harmony can be represented as follows as is done here for the 𝑖𝑡ℎ component 

 

a. For Continuous design variables:   

   

     

     

 

,  ,    1

, [0,1]    ,   0.5 
 

, [0,1]    ,    0.5   

 ,    1  

                               

i

random

HM m i P HMCR PAR

HM m i ran bw P HMCR PAR
x

HM m i ran bw P HMCR PAR

x P HMCR

   
 

    
  

    
 

  
 (2.5a) 

b. For discrete design variables: 
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,  ,   1

1, ,     0.5 
       

1, ,     0.5   

 ,     1  

                               

i

random

HM m i P HMCR PAR

HM m i P HMCR PAR
x

HM m i P HMCR PAR

x P HMCR

   
 

   
  

   
 

  
    (2.5b) 

where: 

 𝑚 : represents a random row number, 1 ≤ 𝑚 ≤ 𝐻𝑀𝑆. 

Typically 1 + 𝑖𝑛𝑡[𝑟𝑎𝑛[0,1) × 𝐻𝑀𝑆] 

𝐻𝑀[𝑚, 𝑖] : Is the member with row number 𝑚 and column number,                         

𝑖 = 1,2,3, … ,𝑁 . 

𝑟𝑎𝑛 : Randomly distributed number between (0,1). 

𝑥𝑟𝑎𝑛𝑑𝑜𝑚  : Random value from the admissible set 𝑿𝑖 for the 𝑖𝑡ℎvariable. 

 

Equations 2.5 represent the different ways a new harmony can be improvised. As 

mentioned earlier HM consists of m rows and N columns , where each column represent 

candidate values that can be assign to the 𝑖𝑡ℎ design variable. The first case in Eqs (2.5a) 

and (2.5b) represent picking values randomly from the HM without pitch adjusting. The 

second and the third cases represent picking random values from HM with pitch 

adjustments. And finally the last case represents picking a value randomly from the 

admissible set for the design variable, 𝑿𝑖   . 

 

Step 4: Update HM 

If the new improvised harmony is better than any of the harmonies in the HM 

then it goes into the HM replacing the worst harmony. Otherwise the improvised 

harmony is neglected. A better harmony is one that has better fitness function which is 

simply the objective function in case of unconstrained problems. In the case of the 
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constrained problems, fitter harmonies are the one those that have better objective 

function values and less constraint violations.   

Step 5: Check the termination criteria: 

Usually the harmony search stops when it reaches a specified maximum number 

of iterations, however; some researchers have used other termination criterion such as 

Cheng et al [13]. In their work the iteration process is terminated when the change in the 

objective function is less than a small value after a specified number of iterations. For the 

examples presented in this chapter, the former method is used. 

2.3 Summary of the Harmony Search Steps and Algorithm 

The overall flow of the harmony search algorithm is shown in Figure 2.2 (adapted 

from Lee [14]). The improvisation of a new design for continuous variables is shown in 

Figure 2.3, while that for discrete variables is shown in Figure 2.4. 
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 Figure 2.2: Classical HM steps for unconstrained optimization process. 
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Figure 2.3: New harmony improvisation for a continuous variable 𝑥′𝑖. 
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Figure 2.4: New harmony improvisation for a discrete variable 𝑥′𝑖. 
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2.4 Unconstrained Numerical Examples 

2.4.1 Example Problem 2.1: A Discrete Unconstrained 

Example    

In the following a simple unconstrained numerical example is solved to further 

explain the basic steps and ideas of the harmony search. The problem involves finding 

the global minimum of the function which by inspection occurs at the point 

(𝑥1 , 𝑥2, 𝑥3) = (0,1,2) 

 

 

 (2.6)  

 

 

This Problem is solved as a discrete problem with 3 design variables, each of which can 

take on 8 potential values. There are thus 83 = 512 possible solution to this problem. 

The harmony search utilizes the so called harmony memory (HM) to store the HMS 

candidate solutions and for this problem HMS = 4 , HMCR=0.8 ,and PAR= 0.3. 

The harmony memory is initialized by assigning random values to each design variable 

from the set of admissible values  𝑿𝒊 , as indicated by equation 2.3. For this example an 

initial HM is as shown in Figure 2.5 
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Figure 2.5: A starting HM for example problem 2.1 

In each iteration a new harmony is improvised and its objective function is evaluated. If it 

has a better function value then it replaces the worst harmony in the harmony memory. 

To illustrate, assume that a new improvised harmony is 𝑥′ = (5,2,1) with a 

corresponding function value equal to 27. Since the performance of this harmony exceeds 

that of both harmonies 3 and 4 in the HM, the new improvised harmony replaces the 

worst harmony ie. (7,1,2) in the initial HM, and the HM is updated as shown in Figure 

2.6 . 

 

Figure 2.6: Updated HM after first iteration of example problem 2.1 

  

1 0 3 5 13

2 2 2 5 14

3 6 1 0 40

4 7 1 2 49

Initial HM

Harmony number

Design variables

  𝑥1         𝑥2        𝑥3        (𝒙)

  

1 0 3 5 13

2 2 2 5 14

3 6 1 0 40

4 5 2 1 27

Updated HM

Harmony number

Design variables

  𝑥1         𝑥2        𝑥3        (𝒙)
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The process of improvising new harmonies, checking their performance and 

incorporating them into the HM continues until a specified number of iterations have 

occurred or until the performance of the best design (harmony) can no longer be 

improved. With the parameters specified, the algorithm took an average of 37 iterations 

to find the optimum point𝒙′ = (0,1,2). Since in this explanatory example the optimum 

point is known by inspection, the HS algorithm is terminated immediately after the 

harmony 𝒙′ = (0,1,2) improvised and included in HM.   

The choice of parameters HMS, HMCR, PAR and bw can have an enormous 

influence on the performance of the harmony search algorithm. To illustrate, example 2.1 

was solved with five different values for HMCR (0.1, 0.3, 0.5, 0.8, and 0.9). Since the 

harmony search is stochastic, the problem was solved 10 times with each of the different 

HMCR values .The maximum, minimum, and average number of iterations required to 

find the optimum point are shown in Figure 2.7 and  Table 2.2. Table 2.3 shows the 

number of iterations required to find the optimum for each trial of the different HMCR 

values.  
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Figure 2.7: Influence of HMCR on number of iterations required to solve example 
problem 2.1. The problem was solved ten times with each value of HMCR to 

obtain a range of iterations for convergence. 

As shown in Figure 2.7 the HS method gains its best performance for this example when 

HMCR is around 0.8. 
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Table 2.2: Maximum, minimum, and average number of iterations to solve example 
problem 2.1 for different HMCR values. PAR=0.2 for all calculations. 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3: Number of Iterations required to find the optimum point for different HMCR 
values of problem 2.1 

 

     HMCR     

  0.1 0.3 0.5 0.8 0.9 

Minimum 
iterations 

89 10 6 11 3 

Maximum 
iterations 

466 167 129 55 73 

AVG 251.5 74.2 50 37 37.5 

 HMCR=0.1 HMCR=0.3 HMCR=0.5 HMCR=0.8 HMCR=0.9 

Trial 
Number of 
Iterations 

Number of 
Iterations 

Number of 
Iterations 

Number of 
Iterations 

Number of 
Iterations 

1 363 69 61 31 73 

2 84 123 109 28 48 

3 450 167 51 51 16 

4 199 45 129 34 16 

5 251 36 31 55 25 

6 139 91 33 23 15 

7 466 23 9 20 73 

8 165 111 6 78 67 

9 89 10 21 11 3 

10 309 67 50 39 39 

AVG 252 74 50 37 30 
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Similarly in order to study the influence of PAR on problem 2.1, six different 

PAR values (0.99, 0.8, 0.5, 0.3, 0.2, and 0.1) were tested and each was run 10 times. The 

HMCR value was fixed and equals 0.8. Figure 2.8, Table 2.4, and Table 2.5 show the 

number of iterations required to find the optimum point for the different PAR values. It 

can be seen that for this example HS method gains its best performance when the PAR 

value ranges between 0.3 and 0.5. 

 

Figure 2.8: Influence of PAR on example problem 2.1 solved with HMCR=0.8. 

The previous problem has a unique global optimum solution. It is thus not 

surprising that after many iterations the harmony memory is homogeneous with all the 

harmonies identical, as shown in Figure 2.9. 
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                     PAR     

  0.99 0.8 0.5 0.3 0.2 0.1 

Min iterations to 
optimum 

10 13 4 5 11 4 

Max iterations to 
optimum 

395 87 110 58 78 67 

AVG 96 74 39 40 38 28 

Table 2.4: Maximum, minimum, and average number of iterations for different PAR 
values to solve example 2.1 

 

 

PAR= 0.99  0.8  0.5  0.3 0.2 0.1 

Trial Iter Iter Iter Iter Iter Iter 

1 56 33 27 20 31 29 

2 120 31 105 58 28 67 

3 14 51 30 14 51 4 

4 129 52 110 15 34 34 

5 32 13 45 49 55 19 

6 395 73 10 57 23 45 

7 45 11 17 65 20 24 

8 10 18 18 5 78 22 

9 103 14 4 65 11 16 

10 54 87 24 52 39 22 

AVG 96 38 39 40 37 28 

Table 2.5: Number of Iterations required to find the optimum point for different PAR 
values of problem 2.1 
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Figure 2.9: Homogenous HM where all harmonies consist of global optimum 

2.4.2 Example 2.2: A Continuous Unconstrained Example    

The forgoing example 2.1 was solved with discrete design variables, but here it 

will be solved with continuous design variables that all range between -5 and 5, 

−5 ≤ 𝑥𝑖 ≤ 5 for 𝑖 = 1,2,3 .The problem is stated as follows:  

 

 

   

   (2.7) 

 

As before this problem has three design variables with a minimum value of zero 

at the point (𝑥1, 𝑥2, 𝑥3) = (0,1,2). For problem 2.2,  HMS = 10 , HMCR=0.8 ,PAR= 0.4 

,and bw = 0.1. 

The harmony memory is initialized by assigning random values to each design variable 

from the set of admissible range, as indicated by equation 2.2. For this example an initial 

HM shown in Table 2.7. 
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𝒙𝟏 𝒙𝟏 𝒙𝟑 𝒇(𝒙) 

2.25 4.33 −4.12 53.73 

2.26 −0.70 −0.34 13.52 

4.12 −0.14 −2.00 34.4 

−3.97 4.74 −3.87 64.28 

1.02 4.98 2.69 17.44 

−1.62 1.84 −1.06 12.76 

2.44 4.05 −1.57 28.13 

1.18 −4.61 −0.65 40.01 

−0.96 4.08 1.00 11.44 

3.66 4.85 4.63 35.24 

Table 2.6: A starting HM for example problem 2.2. 

A near optimum cost function value of 0.0004 at the point (𝑥1, 𝑥2, 𝑥3) =(.0001, 0.98, 

1.983) was obtained in less than 1000 iterations. Figure 2.10 shows the change if 𝒇(𝒙). 
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Figure 2.10: f(x) vs. iteration count for example2.2 

2.5 Variants of Harmony Search  

Since it was first introduced in 2001, variations of the harmony search have been 

proposed and investigated with the goal of improving the performance of the algorithm in 

both constrained and unconstrained problems.  

Degerteki[15] modified the initialization process by generating two harmony 

memories instead of one. Other researchers such as Mahdavi et al [16], proposed 

expressions for selecting and dynamically updating the search parameters such as 

HMCR, bw, and PAR, as the search progresses. Some of these expressions are given as 

follows: 

max min
min

( )
   

                               

g g
NI

 
 


  

  (2.8) 
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  (2.9) 

where: 

𝛼𝑔 ∶ Pitch adjusting rate for each generation. 

𝛼𝑚𝑖𝑛 ∶Minimum pitch adjusting rate. 

𝛼𝑚𝑎𝑥 ∶ Maximum pitch adjusting rate. 

𝑁𝐼 ∶ Number of solution vector generations. 

𝛼𝑚𝑎𝑥 ∶ Maximum pitch adjusting rate. 

𝑏𝑤𝑔 ∶ bandwidth for each generation. 

𝑏𝑤𝑚𝑖𝑛 ∶Minimum bandwidth. 

𝑏𝑤𝑚𝑎𝑥 ∶ Maximum bandwidth. 

 

Hasancebi and Saka [17] developed the adaptive harmony search in 2009 in 

which the HMCR and PAR are adjusted dynamically as follows:  

(2.11) 

 

(2.12) 

 

 

where:  

𝜇𝑘: Harmony memory consideration ratio for the k-th iteration. 

𝛼𝑘: Pitch adjusting ratio for the k-th iteration. 

𝑁(0,1) : Is a normally distributed number between 0 and 1. 
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𝛾: Is a learning rate of control parameters which is recommended to be in a range                                               

          of [0.25 . 0.5] . 

�̅� =  ∑ 𝜇𝑖𝑛
𝑖=1 𝑛⁄   

�̅� =  ∑ 𝛼𝑖𝑛
𝑖=1 𝑛⁄   

𝑛 : is the harmony memory size. 

 

The harmony search method has been also modified by changing the termination criteria 

as in the work of Cheng et al [13] work where the iteration process is terminated when 

the change in the objective function is less than a small value after a specified number of 

iterations. 

The original HS has also been hybridized with other optimization methods such 

as: artificial bee colony [18] , firefly method [19] , sequential quadratic programming 

[20] and many other methods.  

2.6 Explorative Harmony Search (EHS) 

2.6.1 EHS Basic Idea  

EHS was developed by Das et al [23] and published in one of the few papers that 

mathematically analyzed the harmony search method .The efficiency and robustness of 

any heuristic method depends on both its explorative power and its exploitation power, 

and its ability to balance between them.  Exploration (diversification) is the ability of the 

algorithm to explore the design space, while exploitation (intensification) is the ability of 

the algorithm to use and exploit the information gathered during the search process to 

converge to an optimum. Too much intensification might cause the algorithm get trapped 

in local minima, while too much diversification causes the search to scatter around some 

potential optima in the search space. 
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Das studied the exploratory powers of the HS algorithm by analyzing the variance 

of the population over successive generations and introduced the following analytical 

expression for the expected population variance:  

  2

2
2

1
( )   ( )  (1 )  

1
                              +      (1 )  

3

                        

3

       

w

m
E Var Y Var x x

m

a
b

  

  


     


     

  (2.13) 

where:  

μ: Is the harmony memory consideration ratio. 

α: Is the pitch adjustment ratio. 

𝒀 = (𝑌𝟏, 𝑌𝟐, … , 𝑌𝒎) is an intermediate population obtained by new harmony          

            improvisation. 

�̅� = population mean. 

𝑏𝑤 = an arbitrary distance band width. 

𝑚 = harmony memory population size (HMS). 

(−𝑎, 𝑎) = (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) design variable’s upper and lower limits. 

 

For the sake of simplicity of the analysis the problem is assumed to consist of one 

decision variable and the improvised vector in each step is a vector of candidate 

solutions. “Now, if we can show that the population variance over generations is 

increasing by applying only the variation operators, it can be inferred that the algorithm 

has good explorative power”.  

 In order to guarantee that the expected population variance is increased “the 

distance bandwidth parameter (bw) is chosen to be proportional to the standard deviation 

of the current population” 𝑏𝑤 ∝ 𝜎(𝑥) = √𝑉𝑎𝑟(𝑥)    . So if in equation (2.13)             

𝑏𝑤 = 𝑘√𝑉𝑎𝑟(𝑥)    and HMCR is chosen to be very close to unity – to eliminate the 
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terms that contain [1-HMCR], the expected population variance for the  𝑔𝑡ℎ population 

becomes: 

  2

0

                              

( 1) 1
( )  .  1  .  . . (

3

 

)

g

g

m
E Var x k Var x

m
 

  
   
    (2.14) 

It is important that the value of the parameters HMCR, PAR, and k should be chosen in 

such a way that the term in the curly brackets is larger than unity which makes 

𝐸 (𝑉𝑎𝑟(𝑥𝑔)) grow exponentially.  

In the original paper by Das el at [23] where the EHS was published, no discrete 

examples were presented in this work, however, the basic idea of EHS, making the 

bandwidth proportional to the population standard deviation, is extended by modifying 

the basic HS algorithm. In Eq. (2.5.a) it can be seen that the pitch can be adjusted as 

follows  𝑥′𝑖 = 𝑥𝑖 + 𝑟𝑎𝑛[0,1] . 𝑏𝑤 , in the case of continuous problems 𝑥′𝑖  can be any 

value as long as 𝑥′𝑖 ∈ 𝑋𝑖 ; however, in the case of discrete optimization problems 𝑥′𝑖 

should be one of the 𝑋𝑖 values, thus after the pitch is adjusted it is rounded to the nearest 

value that is existed in 𝑋𝑖. For example if a discrete design variable 𝑥𝑖  with a 

corresponding HM vector  𝐻𝑀𝐽
𝑇 = {1.2 , 1.3 , 4.5 , 2 , 6.7} is set to be 4.5 based on 

memory consideration. If  𝑥𝑖 is to be adjusted according to the classical HM rules then 𝑥′𝑖  

can be either 1.3 or 2 .However according to this work when EHS is used 𝑥′𝑖 can be any 

value in the possible set. Figure 2.11 shows the pitch adjustment process for discrete 

problem using EHS. 
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Figure 2.11: Pitch adjustment for discrete problems. 

 

 

 

 

 

 



www.manaraa.com

36 
 

 

  

2.6.2 EHS Unconstrained Examples  

2.6.1.1 Goldstein and Price (with four local minima) 

   

   

2 2 2

1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

                            

( ) 1 1 19 14 3 14 6 3

       30 2 3 18 32 12 48 36 27

   

f x x x x x x x x x

x x x x x x x x

          

         
  (2.15) 

 

Figure 2.12: The Goldstien and Price function. 

For this 2 design variable problem, EHS parameters were set as follows:      

HMCR = 0.93 , PAR =0.75 , HMS = 10. This Problem has an optimum value of 3 at 

(0,1). Using the EHS, the optimum value could be obtained in less than 300 iterations 

compared to 10 000 iterations for the basic HS method. Figure 2.1 shows the change in 

f(x) with the number of iteration. 
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Figure 2.13: History of  f(x) the Goldstien and Price function during solution of example 
2.2. with EHS 
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CHAPTER 3                                                                                                                                     

HARMONY SEARCH METHOD FOR CONSTRAINED 

OPTIMIZATION  

Since practical optimization problems especially structural problems are always 

subjected to constraints, we discuss constraint handling in this chapter followed by 

numerical and structural applications.  

3.1 Constraint Handling 

Transformation methods are widely used to solve constrained optimization 

problems. In these methods a constrained problem is transformed into a sequence of 

unconstrained problems.  Such methods employ the so-called penalty function which is a 

combination of the original objective function, the constraints functions, and some 

penalty parameters.  After transforming the constrained problem, it is minimized as an 

unconstrained problem and if there are any constraint violations, the cost (objective) 

function is penalized by adding a positive value. The quadratic loss function   is 

considered one of the most popular penalty functions: 
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The drawback of using (3.1) and (3.2) is that penalty parameters should be chosen 

judiciously since they are problem dependent parameters.  

In order to avoid the risk of choosing unsuitable penalty parameters for the 

examples presented in this work the Fitness Priority-Based Ranking Method (FPBRM) 

(Dong, Tang, Xu, and Wang, 2005) is used[21,22]. In this approach a fitness value 

between 0  and 1 is given to each candidate solution based on its constraints satisfaction. 

A value of 1 means that all constrained are satisfied while a value of zero means that 

none of the constrained are satisfied. The constraint fitness function can be represented as 

follows: 
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Above,  ℎ𝑚𝑎𝑥(𝑥)   𝑔𝑚𝑎𝑥(𝑥) are the maximum constraint violation for equalities and 

inequalities respectively and 𝑤𝑖 is a weighting factor that ranges between [0,1] where    

∑ 𝑤𝑖
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𝑖=1 = 1. For the examples represented in this work  𝑤𝑖 is calculated as follows: 
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Where 𝑁𝐼 is the number of inequality constraints and 𝑁𝐸 is the number of equality 

constraints.  

 

3.2 Constrained Example 

3.2.1 Continuous Constrained Example 

In this section we present two structural optimization problems. In both examples 

the design variables are cross sectional areas of the members which are continuous over 

the given range. The objective function to be minimized is the weight of the structure. 

3.2.1.1 Ten-Bar Planar Truss (Loading Case 1) 

Figure 3.1 (adapted from Lee [14]). shows a ten-bar planar truss to be size 

optimized . Structural material properties are as follows he Material density  

(ρ) = 0.1 lb/𝑖𝑛3 ; Modulus of elasticity = 10000 ksi , 𝜎𝑎𝑙𝑙 =25 ksi (both in 

tension and compression). An absolute maximum displacement constraint is 

imposed on the structure of  2.0 in. , The value of the load 𝑃1 is 100. kips, the 

EHS parameters were set as follows: HMCR = 0.8, PAR = 0.3 , maximum 

number of iterations= 50,000 . The minimum cross-sectional area for each 

member was set to be 0.1 𝑖𝑛2.  

The problem can be formulated as follows: 
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The EHS method is used to solve this problem. Whenever a harmony is 

improvised, finite element analyses are performed to calculate its objective function value 

 (𝒙′) and fitness value𝐹(𝒙′)  and compare them with worst harmony in the HM.  

An improvised harmony can be either feasible ( (𝒙′) =1) or infeasible        

( (𝒙′) < 1). Since the starting HM is generated randomly, usually it contains feasible 

and infeasible solutions where each is associated to  (𝒙𝑗) and 𝐹(𝒙𝑗) values                     

1 ≤ 𝑗 ≤ 𝐻𝑀𝑆. The definition of worst harmony in constrained problem is different than 

that for unconstrained problems. In constrained problems, as long as not all the 

harmonies in HM are feasible, the worst harmony is the one that has the minimum fitness 

 

.  

 

 

 

 

Figure 3.1: Ten-bar planar truss (case1) [14] 

value 𝐹(𝒙𝑚𝑖𝑛) and if the improvised harmony 𝒙′ has a higher fitness value it replaces the 

worst harmony in the HM. Once all harmonies in HM are feasible the problem become 

similar to unconstrained problems and worst harmony becomes the one that has the 

highest objective function value (𝒙𝑚𝑎𝑥) . Consequently, the harmony associated with 

 (𝒙𝑚𝑎𝑥) is replaced by the improvised harmony 𝒙′ if it is feasible and has a lower 
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objective function value  (𝒙′) <  (𝒙𝑚𝑎𝑥) . However, the improvised harmony is 

neglected if it is infeasible. 

 

 

 Table 3.1 shows the starting harmony (randomly generated) for this problem and 

their associated  (𝒙𝑗) and 𝐹(𝒙𝑗) values. 

 

Table 3.1: Starting HM for the Ten-bar planar truss  

1 24.41 32.14 28.06 21.90 25.47 5.15 17.46 6.49 11.08 17.69 7.62 0.95

2 22.47 2.73 4.33 7.49 10.40 3.03 33.83 25.15 7.09 30.16 6.71 0.87

3 27.02 31.23 23.32 34.14 0.28 7.96 23.20 6.30 20.29 12.80 7.64 0.95

4 0.71 14.56 24.21 10.39 21.41 15.36 33.35 22.80 13.65 32.01 8.3 0.87

5 5.85 7.64 20.35 16.56 23.01 29.39 30.58 31.76 20.58 1.99 8.02 0.91

6 8.71 30.37 27.79 6.92 18.51 14.58 4.81 12.49 17.20 19.99 6.62 0.91

7 13.82 10.51 2.19 33.22 4.06 26.51 15.75 27.40 10.08 17.86 6.87 0.86

8 22.53 28.67 9.14 33.53 10.25 11.87 4.04 28.77 19.53 1.38 6.91 0.91

9 16.10 30.81 15.02 0.26 34.43 7.91 20.66 14.30 7.70 17.52 6.82 0.88

10 11.74 32.19 18.71 31.69 28.22 8.17 8.58 15.64 5.41 26.90 7.58 0.92

11 19.36 11.73 6.62 10.54 15.27 3.10 4.30 8.29 16.05 23.71 5.06 0.91

12 20.61 4.72 32.33 14.83 31.94 10.28 19.98 33.84 11.74 10.52 8.00 1.00

13 5.47 32.05 24.31 26.25 32.46 34.19 30.19 34.80 3.22 23.02 10.2 0.91

14 12.81 1.03 22.48 33.72 31.08 0.99 25.50 10.84 33.65 7.54 7.62 0.95

15 2.54 10.50 14.31 13.42 8.47 29.85 29.08 27.10 25.12 7.11 7.34 0.86

16 18.88 7.58 8.88 25.59 20.67 27.32 12.99 10.81 8.03 16.47 6.38 0.91

17 22.62 32.44 19.81 7.06 3.24 32.45 33.40 24.56 5.22 9.86 7.95 0.92

18 34.34 16.54 29.33 22.02 7.32 7.45 17.09 12.15 29.07 25.96 8.5 1.00

19 30.90 26.53 20.75 13.64 23.41 2.20 7.51 0.41 29.86 7.15 6.51 0.80

20 18.09 7.99 25.00 12.65 26.73 7.35 15.05 19.16 23.78 29.35 7.96 0.95

𝑥1 𝑥 𝑥2 𝑥3 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥1  (𝒙) 𝐹(𝒙)
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Since the starting HM contains infeasible solution the worst harmony is the one with the 

lowest fitness value which is the 19𝑡ℎ harmony with 𝐹(𝒙1 ) = 0.8. After the first 

iteration the following harmony was improvised 

 𝒙′ = (14.06, 10.51, 18.95, 12.22, 10.40, 27.32, 33.94, 23.85 , 8.54, 11.60)                                                   

with a corresponding fitness value 𝐹(𝒙) = 0.91 . Consequently, 𝒙′ replaces 𝒙𝟏𝟗 in HM 

due its larger fitness value. Table 3.2 shows the updated HM 

 

 

Table 3.2: Updated HM for the Ten-bar planar truss after the first iteration. 

1 24.41 32.14 28.06 21.90 25.47 5.15 17.46 6.49 11.08 17.69 7.62 0.95

2 22.47 2.73 4.33 7.49 10.40 3.03 33.83 25.15 7.09 30.16 6.71 0.87

3 27.02 31.23 23.32 34.14 0.28 7.96 23.20 6.30 20.29 12.80 7.64 0.95

4 0.71 14.56 24.21 10.39 21.41 15.36 33.35 22.80 13.65 32.01 8.3 0.87

5 5.85 7.64 20.35 16.56 23.01 29.39 30.58 31.76 20.58 1.99 8.02 0.91

6 8.71 30.37 27.79 6.92 18.51 14.58 4.81 12.49 17.20 19.99 6.62 0.91

7 13.82 10.51 2.19 33.22 4.06 26.51 15.75 27.40 10.08 17.86 6.87 0.86

8 22.53 28.67 9.14 33.53 10.25 11.87 4.04 28.77 19.53 1.38 6.91 0.91

9 16.10 30.81 15.02 0.26 34.43 7.91 20.66 14.30 7.70 17.52 6.82 0.88

10 11.74 32.19 18.71 31.69 28.22 8.17 8.58 15.64 5.41 26.90 7.58 0.92

11 19.36 11.73 6.62 10.54 15.27 3.10 4.30 8.29 16.05 23.71 5.06 0.91

12 20.61 4.72 32.33 14.83 31.94 10.28 19.98 33.84 11.74 10.52 8.00 1.00

13 5.47 32.05 24.31 26.25 32.46 34.19 30.19 34.80 3.22 23.02 10.2 0.91

14 12.81 1.03 22.48 33.72 31.08 0.99 25.50 10.84 33.65 7.54 7.62 0.95

15 2.54 10.50 14.31 13.42 8.47 29.85 29.08 27.10 25.12 7.11 7.34 0.86

16 18.88 7.58 8.88 25.59 20.67 27.32 12.99 10.81 8.03 16.47 6.38 0.91

17 22.62 32.44 19.81 7.06 3.24 32.45 33.40 24.56 5.22 9.86 7.95 0.92

18 34.34 16.54 29.33 22.02 7.32 7.45 17.09 12.15 29.07 25.96 8.5 1.00

19 14.06 10.51 18.95 12.22 10.40 27.32 33.94 23.85 8.54 11.60 7.59 0.91

20 18.09 7.99 25.00 12.65 26.73 7.35 15.05 19.16 23.78 29.35 7.96 0.95

𝑥1 𝑥 𝑥2 𝑥3 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥1  (𝒙) 𝐹(𝒙)
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Table 3.3 shows the updated HM after performing 155 iterations where the fitness value 

of all harmonies is equal to 1 (𝐹(𝒙𝒋) = 1 ;  1 ≤ 𝑗 ≤ 𝐻𝑀𝑆). Which means all harmonies 

in HM are feasible. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: Updated HM for the Ten-bar planar truss after 155 iterations, where all 
harmonies are feasible. 

Since all harmonies are feasible the worst harmony is the one with the highest objective 

function which is the first harmony in HM (𝒙1) with a corresponding objective function 

value (𝒙𝑚𝑎𝑥) = 9.56 . 

 For the 160𝑡ℎiteration the following feasible harmony was improvised 

1 18.49 34.98 23.47 33.46 15.08 11.60 21.04 9.21 33.65 26.85 9.56 1.00

2 19.31 34.98 31.41 21.86 8.06 24.53 13.97 35.00 12.94 10.57 8.74 1.00

3 19.57 5.22 29.33 32.75 0.10 9.65 24.98 31.02 22.32 0.56 7.49 1.00

4 20.61 27.10 31.41 12.08 3.24 20.08 17.47 13.18 29.86 8.69 7.65 1.00

5 24.66 17.63 33.00 26.17 10.28 9.74 14.06 28.02 11.08 8.69 7.52 1.00

6 34.34 12.52 32.33 4.66 13.40 3.50 31.89 17.55 33.61 11.27 8.43 1.00

7 34.34 4.72 31.41 15.62 7.32 3.47 34.82 10.29 32.78 8.69 7.9 1.00

8 21.03 23.76 31.41 14.61 0.10 7.45 17.00 31.02 33.65 26.85 9.07 1.00

9 25.29 10.19 32.33 21.86 31.94 10.57 14.06 23.12 33.61 16.13 9.18 1.00

10 32.84 4.72 20.30 15.42 13.40 4.65 35.00 15.21 33.65 9.41 8.04 1.00

11 27.02 1.99 31.51 33.46 13.40 5.15 24.98 19.16 25.08 19.82 8.58 1.00

12 20.61 4.72 32.33 14.83 31.94 10.28 19.98 33.84 11.74 10.52 8.00 1.00

13 27.02 15.62 21.91 4.11 13.40 21.04 24.98 23.12 29.86 9.76 8.18 1.00

14 34.34 31.23 31.41 14.06 1.60 5.15 13.27 9.21 33.65 17.35 7.98 1.00

15 27.02 14.08 31.51 24.69 5.72 10.16 24.53 31.02 12.94 11.27 8.14 1.00

16 34.34 27.40 26.50 21.90 5.72 5.15 35.00 28.02 13.59 17.86 9.17 1.00

17 34.34 34.55 29.33 33.46 5.72 0.99 13.70 19.50 15.03 6.87 7.79 1.00

18 34.34 16.54 29.33 22.02 7.32 7.45 17.09 12.15 29.07 25.96 8.5 1.00

19 25.20 33.01 24.77 6.21 15.08 7.45 34.82 19.50 33.65 13.96 9.21 1.00

20 27.02 15.62 27.09 21.86 5.72 0.49 7.03 28.87 22.32 8.22 6.9 1.00

𝑥1 𝑥 𝑥2 𝑥3 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥1  (𝒙) 𝐹(𝒙)
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𝒙′=(25.2, 4.72, 18.71, 32.75, 9.97, 10.28, 19.8, 26.6, 14.61) with a corresponding 

objective function value ( (𝑥) = 7.72). Since 𝒙′ is feasible and has a better objective 

value it replaces the first harmony in HM. 

The optimization process continues until the specified maximum number of 

iterations is performed. The results obtained using the EHS algorithm shown in table 3.4 

are very close to the results obtained by K.S.Lee[14] who obtained an objective function 

value of 5.057 kip using the same algorithm. Figure 3.1 shows the change in the best 

objective function value with the number of iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4: Best solution for the ten-bar planar truss example 

 

Design variable Design variable 𝑥𝑖  value 
𝑖𝑛2 

𝑥1 30.87 

𝑥2 0.1 

𝑥3 23.47 

𝑥  14.51 

𝑥  0.1 

𝑥  0.53 

𝑥  7.5 

𝑥  21.17 

𝑥  21.01 

𝑥1  0.1 

 (𝑥) 5.07 kips 
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Figure 3.2: History for solution of the 10-bar Planar truss problem   

3.2.1.2 Eighteen-bar Planner Truss 

The eighteen-bar planar truss shown in Figure 3.3 is to be size optimized,  P is 20 

kip, 𝐸 = 1 × 10 𝑘𝑠𝑖 , 𝜌 = 0.1𝑙𝑏/𝑖𝑛3,  | 𝜎𝑚𝑎𝑥| = 20 𝐾𝑠𝑖 , Euler buckling compressive 

stress limitations were imposed for truss and expressed as follows :  𝜎𝑏𝑖 = −𝑘𝐸𝐴𝑖/ 𝐿𝑖
2 
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where 𝑘 is set to 4 in this example. EHS parameters were set as follows: HMCR = 0.8, 

PAR = 0.3 , maximum number of iterations= 10,000 The minimum cross sectional area  

𝐴𝑚𝑖𝑛 = 0.1 𝑖𝑛2 . In this problem the structural members where linked in four groups as 

follows: 

 

i. 𝐴1 = 𝐴 = 𝐴 = 𝐴12 = 𝐴1  

ii. 𝐴2 = 𝐴 = 𝐴1 = 𝐴1 = 𝐴1  

iii. 𝐴3 = 𝐴 = 𝐴11 = 𝐴1  

iv. 𝐴 = 𝐴 = 𝐴13 = 𝐴1  

 

Figure 3.3: Eighteen-bar truss. 

 

Table 3.5: Eighteen bar planar truss results. 
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CHAPTER 4                                                                                                                                     

HARMONY SEARCH FOR TRUSS TOPOLOGY OPTIMIZATION 

4.1 Introduction 

In the previous chapters detailed explanations of the standard harmony search 

were introduced followed by the explorative harmony search. These methods were used 

to solve numerical and structural truss size optimization problems. In this chapter, the 

harmony search is extended to solve binary discrete truss topology optimization 

problems. 

Since it was developed in (2001) HS has been successfully used in many works to 

solve discrete and continuous optimization problems. Geem[24] applied the HS algorithm 

to the optimal water pump switching problem (which is a binary problem where the status 

of the pump is represented either by 0 or 1 ) and it yielded better results than those 

obtained using GA. However, in 2009  Greblicki [25] noted inefficiency of the HS 

algorithm for large binary problems (𝑛 ≥ 200 design variables). Although many variants 

have been proposed to improve the harmony search ability for optimizing general 

continuous and discrete problems, few works have been devoted to improving its 

performance in solving binary-coded problems. Nevertheless in 2010 Wang et al. [26] 

pointed out that the pitch adjustment strategy used in standard harmony search explains 

the poor performance of HS for binary problems. Thus, a new pitch adjustment strategy 

was proposed and it is used throughout this work. After Introducing the discrete binary 

harmony search algorithm (DBHS) method Wang et al.[27] developed the multi-

objective binary harmony search algorithm (MBHS) to handle binary multi-objective 

optimization problems. In 2013 the adaptive binary harmony search (ABHS) was also 

proposed by Wang et al.[28] to solve binary coded problems more efficiently. In the 

former method a new harmony memory consideration strategy was proposed with new 

expression for the HMCR parameter that made it increase linearly with iteration counts.  
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This chapter is organized as follows. Section 1 gives a brief overview of discrete 

topology optimization. In section2, modifications and enhancements to the harmony 

search that make it suitable for topology optimization are introduced and explained in 

detail. Finally in section 3 some truss topology benchmark examples that are frequently 

solved in the literature are presented and solved. 

4.2 Topology Optimization 

4.2.1 Discrete and Continuum Topology Optimization 

Structure topology optimization is the mathematical approach which determines 

the number, location and shape of the holes within a specified region and the 

connectedness of the domain in order to minimize or maximize a given criteria (objective 

function). “The selection of optimal topology is arguably among the most structural 

optimization problems” [29], since only few quantities are known in advance such as the 

possible boundary conditions and some constraints on the volume of the structure. 

In general there are two main techniques to optimize the topology of a structure 

and these are: 

1. Discrete optimization method. 

2. Continuum optimization method. 

In the first technique the structure is modeled with a finite number of structural members 

(truss, frames, beams) and nodes. In the second the structure is modeled as continuum. A 

comparison between the two techniques is discussed in detail by Rozvany [8] and 

summarized in table 4.1:  
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Table 4.1: Comparison between discrete and continuum structural topology optimization 
techniques.[following Rozvany]. 

Since the aim of this work is to use the heuristic harmony search method, the reminder of 

this chapter will focus on discrete topology optimization of trusses. 

4.2.2 Truss Topology Optimization 

4.2.2.1 Problem Formulation 

Most of the truss topology optimization works in the literature are based on the 

ground structure concept introduced by Dorn et al in 1964 [30]. A ground structure is a 

highly connected structure where each node is connected to all other nodes, as shown in 

figure 4.1. During the optimization process, members that have zero cross sectional area 

are eliminated from the ground structure in order to reach the best substructure that 

satisfies the load and support conditions. 

Truss topology optimization problem can be formulated in many different ways. 

A book by Rozvany [9] illustrates in details the techniques of transforming different 

formulations into equivalent problems. In this work we focus only on the problem of 

minimizing the compliance (external work) which considered one of the basic  

Discrete optimization technique Continuum optimization technique 

Problem is solved using numerical 
methods iteratively. 

 

Problem is solved using analytical 
methods, where all equations are solved 
simultaneously. 

The structure is modeled using finite 
number of structural elements 

The structure is modeled using a large  
number of continuum elements 

The minimum prescribed cross sectional 
are is small or zero  

Design variables are typically solid volume 
fractions. 
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Figure 4.1: Ground structure 

Formulations that can be optimized using the harmony search method.  The minimum 

compliance problem is stated as follows: 

T

V

1
min                     

2

 such that           ,       

                                  

   

      

      

        

                      

X





x
f u 

K(x) u f

x
  (4.1) 

Where 𝒇𝑇= { 1,  2, … ,  𝑛} is the external force vector applied to the structural nodes, 𝒖 = 

{𝑢1, 𝑢2, … , 𝑢𝑛} is the corresponding nodal displacement vector (state variable vector) 

under load  𝒇; and term 𝒇𝑇 . 𝒖  represents the structural compliance. Here 𝑛 denotes the 

number of degrees of freedom of the truss model after eliminating the fixed nodal degrees 

of freedom. The constraint in Eq (4.1) requires the structure to be in equilibrium where 𝑲 



www.manaraa.com

52 
 

 

  

is the structural stiffness matrix which results from the assembly of all member level 

stiffness matrices  

 
1

 A    
m

i i
i

x


K x  K   (4.2) 

𝑥𝑖 Represent the cross sectional area, 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑚} is the vector of design variables 

in which 𝑥𝑖 ≥ 0  is the 𝑖𝑡ℎ element volume (cross sectional area × length), and 𝑚 is the 

number of elements.  

𝑲𝒊 is the 𝑖𝑡ℎ element stiffness square matrix and has a size of(4 × 4) or(6 × 6) for planar 

and space trusses respectively, and is given as follows: 

 =  Ti
i i i

i

E

l
K γ γ   (4.3) 

In Eq (4.3) 𝜸𝑖  is the 6 × 1 (space truss) or 4 × 1 (planar truss) directional cosines 

between the members and coordinate axes.    

4.2.2.2 Solving the minimum compliance optimization 

problem 

Through the years minimum compliance truss topology optimization problems 

and their equivalent formulations have been solved using a multitude of procedures such 

as linear programing, nonlinear programing, dynamic programing and heuristic methods.  

Reviews by Topping [31,32] and Rozvany [8] are usually cited as key references ponding 

insight into the different optimization methods. In recent years heuristic methods have 

been used extensively to tackle truss topology optimization problems. Hajela and Lee 

[29] used genetic algorithm to obtain near optimal solutions by employing a two-step 

algorithm that generated a number of low weight stable solutions in the first step, and 

minimized the weight in the second step. Simulated annealing (SA) methods have also 

been used in some works such as a that Hasancebi and Erbatur [33]  where SA was used 

to simultaneously optimize truss structures with respect to size, shape and topology 
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design variables. Although heuristic search methods are employed in numerous studies, it 

is noticed that such method have been applied almost exclusively to fairly small scale 

problems [34]. Thus the aim in this chapter is to study the efficiency of the HS method in 

tackling truss topology optimization problems. 

The original ground structure approach can be considered as a size optimization 

problem where the member cross sectional area can vanish thereby removing the 

associated members from the ground structure. The process of removing the members 

with vanishing cross-sections may in most cases result in unstable structure (singular 

stiffness matrix) due to the existence of some nodes that are not connected to any 

elements or the existence of two collinear elements that are connected by an internal 

hinge [35]. Setting the lower bound on the cross sectional area to a very small value 𝜖 is 

proposed in the literature to avoid obtaining unstable trusses during the optimizing 

process; Nevertheless, this doesn’t solve the problem of obtaining unstable structure 

eventually after dropping all elements with infinitesimal cross sectional area. Figures 4.1 

and 4.2 present an example that further explains the previous idea [36]. The truss in 

Figure 4.2 was size optimized by setting the lower cross sectional area bound to 0.001 

and all elements that have an area of 0.001 were dropped at the end of the optimization 

process which led to an unstable optimal solution as shown in the figure 4.2.  

Since in this work we aim to obtain stable optimal truss designs, the cross 

sectional areas are allowed to vanish hence dropping members from the ground structure. 

Some of the resulting instability are tackled as follows: 

1. If there is a node that is not connected to any element then this node is dropped. 

2. If a node (hinge) connects only 2 collinear elements then the hinge is dropped and 

the two elements are merged together to form one continuous element. 
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For each candidate solution after dropping the vanishing members, merging 

collinear elements that are connected with one node, and dropping unconnected nodes the 

algorithms define a new finite element model with the real number of nodes and elements 

to be further analyzed for stability as explained in later sections.    

 

Figure 4.2: A ground structure of truss to be topology optimized 
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Figure 4.3: Topologically optimized truss after dropping members with vanishing cross-
sections. (Stable under Case 1 + Case 2, Stable under Case 1 + Case 2 + Case 3 , 

otherwise unstable) 

In this work Problem 4.1 is redefined in a very similar way as shown in 4.4 
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The only difference between 4.1 and 4.4 is volume constraint, where 𝑉(𝑥) the 

volume of the structure after dropping zero cross sectional area members,  𝑉𝑀𝑎𝑥 is the 
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volume of the ground structure and given in equation (4.5), 𝑐 dictates the portion of the 

ground structure’s material that should be included in the optimal structure with            

0 < 𝑐 ≤ 1 . 

4.3 Harmony Search Modifications to Suit Topology 

Optimization 

4.3.1 Pitch Adjustment 

The role of the pitch adjustment operator is to search for a better local optimum. 

In standard harmony search the adjustment operator for binary optimization problems is 

given as follows: 

1     if     0

0     if   
  

                       

 1

        

ij

j

ij

h
x
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    (4.6)  

Where  𝑥𝑗 is the 𝑗𝑡ℎelement in the new improvised harmony that is pitch adjusted; ℎ𝑖𝑗 is 

the 𝑗𝑡ℎelement of the  𝑖𝑡ℎharmony in the harmony memory. 

As mentioned earlier Wang [26] pointed out that the pitch adjustment rule utilized 

in the standard HS is not a good choice if a better convergence performance is to be 

attained for binary problems. So he proposed a new pitch adjustment rule and it is given 

as follows: 
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   (4.7) 

Where 𝑥′𝑗 is the 𝑗𝑡ℎelement of the new improvised harmony  𝒙′ ; r is a random number 

between [0, 1];  ℎ𝑏𝑗 is the 𝑗𝑡ℎelement of the best harmony (row 𝑏 in the harmony 

memory). More details are provided about picking the best harmony in latter sections. 
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4.3.2 Harmony Fitness and HM Updating Strategy 

As it is explained in the Chapter 2 the efficiency and robustness of any heuristic 

search method depends on its explorative and exploitative powers. Explorative power can 

be increased by making the algorithm search new regions in the design space. In HS, this 

is achieved when a new harmony component is generated randomly from the allowed 

range. 

                              

           if
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  [0,1]L i U i L ix x ran x x              (4.9) 

 

where 𝑋𝐿 𝑎𝑛𝑑 𝑋𝑈 are the lower and upper limits for the 𝑖𝑡ℎ design variable. On the other 

hand, exploitative ability is achieved by using the search history information stored in the 

HM and leads the HS to reach the optimum solution. Obviously, the better the 

information that is stored in the HM the more efficient the HS will be. 

In the case of unconstrained problems an improvised solution that yields a better 

objective function value than the worst one stored in the HM replaces it. In constrained 

optimization problems such as the examples solved in the previous chapter, a fitness 

value  that ranges between [0,1] based on the degree of constraints violation is evaluated 

and assigned to each improvised solution . In discrete truss topology optimization , the 

two primary constraints are that the designs be stable and that the amount of structural 

material used doesn’t exceed the allowable amount. 

In truss topology optimization problems each improvised structural design can be one of 

the following  four options: 

 Unstable solution, satisfies the volume constraints. 

 Unstable solution , violates the volume constraints. 
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 Stable solution, but violates the volume constraint. 

 Stable solutions and satisfies the volume constraint.  

Although information from unstable solutions could in principle be useful to guide the 

algorithm to the optimum point, there is no easy way to determine the fitness of unstable 

designs and how to prefer one over another. Figure 4.4 further explains the previous 

point. Figure 3.4 a shows a simple ground structure supporting a load at node 4, and the 

optimum topology for the given load case is shown in 3.4 b. Figure 3.4 c shows an 

unstable design that improvised during the optimization process that is also very close to 

the optimum. However, if this solutions were to be stored in the HM to use its 

information in the searching process another unstable topology might be generated such 

as the ones in d and e. The question here is which solution is better? If this question is not 

answered the harmony search won’t know which harmony is the worst in the HM to 

replace it with a better one. Since including unstable topologies in the HM gives rise to 

difficulty in comparing the fitness of two solutions, unstable solutions must be excluded 

from the HM this work. Consequently, all unstable solution are assigned a negative 

fitness value which are picked to be (-1) in this work. 
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Figure 4.4: Stable and unstable designs 

 

b) stable 

c)  unstable 

a) Ground Structure 

e)  unstable 

d)  unstable 



www.manaraa.com

60 
 

 

  

Stable solution fitness values range between [0, 1] based on the volume constraint 

violation. A stable solution fitness value is given as follows: 

1                      if  ( ) 0

( ) V( ) V
1  if  ( ) 0 

(1 ) V
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j Max
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g x

F x x
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   ( ) V( )  Vv Maxg x x c          (4.11) 

 

𝑉(𝑥) is the volume of the structure represented by harmony and 𝑔𝑣(𝑥)  is the volume 

constraint. 

Stable solutions that violate volume constraints are also penalized by assigning a 

very high compliance value to them. This value is calculated approximately by assuming 

that all the members in the ground structure have a very small area which is assumed to 

be (10− ) in this work. Thus for harmony 𝒙 the compliance value can be calculated as 

follows: 
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𝒖𝑚𝑎𝑥 is an approximate maximum displacement vector (maximum state variables) 

obtained when an area of (10−1 ) is assigned to all ground structure’s elements. 

The fitness and compliance values for all harmonies in the harmony memory 

should be calculated, and the worst harmony should be determined. The improvised 

harmony’s fitness and compliance values should also be calculated and compared with 

the worst harmony in the HM to check if it should be replaced. In order to compare the 

different harmonies a constraint handling method proposed by Deb. [37] in 2000 is used 
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and extended in this work. The method uses the following criteria to prefer one solution 

on another: 

1. Any feasible solution is preferred to any infeasible solution. 

2. Among two feasible solutions, the one having better objective function value 

is preferred. 

3. Among two infeasible solutions, the one having smaller constraints violation 

is preferred. 

In this work the aforementioned criteria is applied by considering stable solutions 

as feasible solution and among two stable solutions one having smaller volume constraint 

violations (has a higher fitness value) is a more preferable solution. Moreover among two 

solutions have the same fitness value the one with lower compliance value is considered a 

better solution. When all the harmonies in the HM have a fitness value of 1 (volume 

constraint is satisfied for all solutions) the compliance value becomes the only criteria to 

evaluate which solution is better. 

4.3.3 Finite Element Analysis 

As it has been explained in the previous sections stable solutions with good 

fitness and compliance values are considered and stored in the HM while unstable 

solutions are disregarded. Since finite element analyses have a high cost and consume a 

lot of time many strategies have been taken in this work to reduce the number of analysis 

and can be summarized as follows: 

1. Perform analysis on stable solutions only. 

The first simple test can be performed to check the instability of a harmony is comparing 

the number of available equations and essential boundary conditions (reactions) with the 

number of nodes as follows:  

    2  r m j    (4.13) 
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where 𝑟 is the number of reactions , 𝑚 is the number of members for a given solution, 

and 𝑗 is the number of joints. If Eq 4.13 is satisfied then the structure is unstable and a 

fitness value of (-1) is assigned to the solution.  

If Eq 4.13 is not satisfied, in other words  𝑟 + 𝑚 ≥ 2𝑗 , the solution is qualified 

for second stability test which is calculating the determinant of the stiffness matrix. If the 

stiffness matrix determinant equals to zero, then the solution is unstable and disregarded, 

otherwise, the solution is stable and may be qualified for farther finite element analysis.  

2. Stable solutions with acceptable range of volume constraint are qualified for 

finite element analysis. 

Although stable solutions with large constraint violations are considered in the 

HM since they have useful information that lead the algorithm to the optimum point, the 

high cost needed to perform analysis makes it inefficient to analyze all stable solutions. 

In order to make the algorithm faster a parameter 𝛼 is introduced and is given as follows: 

 

  (4.14) 

 

  (4.15) 

Where 𝛼𝑚𝑎𝑥 is a user predefined constant. If 𝛼𝑚𝑎𝑥 is set to be 0.4 for example, only 

stable solutions that have 40% and less of the original ground structure’s material are 

qualified for further analysis. Picking a value of 𝛼𝑚𝑎𝑥 depends on the value of the 

constant 𝑐 in the volume constraint expression shown in 3.11. If the value of 𝑐 is set to be 

0.1 for example a value ranges between 0.4 to 0.6 may be suitable for 𝛼𝑚𝑎𝑥. For solution 

where 𝛼 > 𝛼𝑚𝑎𝑥 a fitness value is calculated as in equations 3.10, however this solution 

is penalized by setting its compliance value to be the approximate maximum compliance 

value as in equation 4.12. 
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Figure 4.5 summarize the strategies applied in this work to reduce the number of 

costly analysis.   

 

 

Figure 4.5: Strategies to reduce the number of analysis   
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4.4 Numerical Examples 

A few truss topology examples are presented in this section, for all examples the 

harmony search parameters are set as follows: 

Harmony memory consideration ratio HMCR= 0.7 ; harmony size HS =20 ; pitch 

adjustment ratio PAR ranges between [0.1 ,0.3] depending on the problem , the volume 

constraint constant  𝑐 and the 𝛼𝑚𝑎𝑥 values are specified for each problem. 

 

4.4.1 12-Element Ground Structure Truss 

The boundary conditions and the loading are given in the figure 4.6 for the 6 

nodes 12 elements truss. In this example the 𝑐 value is set to 0.6 and  𝛼𝑚𝑎𝑥 = 1 . In this 

example none of the nodes can be dropped since there are boundary conditions at all 

nodes, also this example considered easy since no two elements needs to be merged into 

one element. The goal of this example is to show that the algorithm is capable of finding 

many optimal solutions that enable the designer to compare them and pick the most 

suitable one since in some cases the constructability of optimal solution might be hard or 

expensive. Figure 4.7 shows the different optimal topologies obtained by using the 

proposed algorithm [7]. 
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Figure 4.6: 12-Element ground structure for example 4.4.1 [36]  
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Figure 4.7: Different optimal topologies obtained for example 4.4.1 
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4.4.2 11-Elemnt Ground Structure Truss 

The 6 nodes 11 elements truss shown in Figure 4.8 is presented frequently in the 

literature. The  𝑐 and   𝛼𝑚𝑎𝑥 parameters are set to be 0.6 and 1 respectively. The 

optimum topology shown in Figure 4.9. 

 

Figure 4.8: Ground structure for example 4.4.2 
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Figure 4.9: Optimal topology for example 4.4.2 

4.4.3 42-Element Ground Structure truss 

The 42-element truss shown in Figure 4.10 presents the algorithm’s capability of 

merging collinear elements into one element. In this example the 𝑐 and 𝛼𝑚𝑎𝑥 parameters 

are set to be 0.2 and 0.4 respectively.  
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Figure 4.10: 42-Element ground structure for example 4.4.3 

The optimal topology is shown in Figure 4.11, where three elements are merged in one 

element and all other unnecessary members and nodes are dropped. 
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Figure 4.11: Optimal topology for truss in example 4.4.3 
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4.5 Conclusion 

In this chapter many modifications have been made to the classical harmony 

search method to suit binary truss topology optimization problems. In this work the 

proposed methodology has been implemented on few benchmark examples and the 

results were obtained with a small number of iterations compared to the total number of 

solution. 

Although the proposed method has been implemented and yielded optimal or near 

optimal results for most of the benchmark problems in the literature, its performance 

declines when the number of design variables increases. That is because the number of 

iterations required to find one stable (usually infeasible) solution exponentially increases 

when the number of design variables increases. Figure 4.12 shows the relationship 

between the number of design variables of the ground structure and the number of 

iterations required to find one stable configuration with less volume than 𝑉𝑜𝑙𝑀𝑎𝑥. 

 

Figure 4.12: Relationship between the number of design variables and the number of 
iterations to find one stable solution. 
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